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Abstract—Cybersickness is an unpleasant side effect of 
exposure to a virtual reality (VR) experience and refers to such 
physiological repercussions as nausea and dizziness triggered in 
response to VR exposure. Given the debilitating effect of 
cybersickness on the user experience in VR, academic interest 
in the automatic detection of cybersickness from physiological 
measurements has crested in recent years. 
Electroencephalography (EEG) has been extensively used to 
capture changes in electrical activity in the brain and to 
automatically classify cybersickness from brainwaves using a 
variety of machine learning algorithms. Recent advances in 
deep learning (DL) algorithms and increasing availability of 
computational resources for DL have paved the way for a new 
area of research into the application of DL frameworks to EEG-
based detection of cybersickness. Accordingly, this review 
involved a systematic review of the peer-reviewed papers 
concerned with the application of DL frameworks to the 
classification of cybersickness from EEG signals. The relevant 
literature was identified through exhaustive database searches, 
and the papers were scrutinized with respect to experimental 
protocols for data collection, data preprocessing, and DL 
architectures. The review revealed a limited number of studies 
in this nascent area of research and showed that the DL 
frameworks reported in these studies (i.e., DNN, CNN, and 
RNN) could classify cybersickness with an average accuracy 
rate of 93%. This review provides a summary of the trends and 
issues in the application of DL frameworks to the EEG-based 
detection of cybersickness, with some guidelines for future 
research.  

Keywords—cybersickness, deep learning, EEG, EEG-based, 
brainwaves, neural networks 

I. INTRODUCTION 
Coeval with the virtual reality (VR) technology itself, 

cybersickness, or simulator sickness, denotes the aftereffects 
of exposure to VR, commonly characterized by such 
physiological symptoms as nausea, dizziness, sweating, and 
lightheadedness [1 - 3]. While different accounts of the causes 
of cybersickness are available in the literature [4], sensory 
mismatch theory is commonly regarded as the most plausible 
explanation for the occurrence of cybersickness [5]. 
According to the sensory mismatch theory [6, 7], 
cybersickness arises from a mismatch between visual and 
vestibular systems while users are exposed to a VR 
experience. More specifically, the vestibular feedback 
provided to the user by the vestibular system falls short of 
accounting for the visual feedback provided by the virtual 
environment (VE) to produce a virtual locomotion effect. This 

happens because the vestibular system works on the basis of 
the vestibular cues provided by the physical environment (not 
the VE) in response to the position, movement, and orientation 
of the user in the physical environment. When these vestibular 
cues are not in accordance with the visual stimuli associated 
with the position, movement, and orientation of the user in the 
VE, this leads to a visual-vestibular mismatch, which in turn 
causes cybersickness [1, 4, 5]. 

Given the long-standing prevalence of cybersickness in 
VR, even when using state-of-the-art VR head-mounted 
displays (HMDs) [3], the measurement of cybersickness has 
been of particular interest to researchers. The majority of the 
studies in the literature have exclusively utilized self-reported 
measures of cybersickness to determine whether users 
experience cybersickness during a VR experience and to 
quantify its severity [1, 4]. For instance, one commonly-used 
self-reported instrument is the Kennedy Simulator Sickness 
Questionnaire [8], which is now the standard self-reported 
measure of cybersickness [5]. While these self-reported 
measures have been shown to yield valid and reliable 
measurements of cybersickness, they are subjective in nature. 
Therefore, there has lately been an increasing interest in 
objectively determining the occurrence of cybersickness 
based on physiological changes observed during VR exposure 
[9].  

Previous studies have attempted to objectively detect 
cybersickness from heart rate and heart rate variability [10-
12], skin conductance levels [11, 12], and respiration rate [11, 
12]. Because of the cognitive and neurovegetative changes 
associated with cybersickness, brainwaves obtained through 
electroencephalogram (EEG) have also been used to 
objectively detect cybersickness [13-19]. Given that such an 
attempt requires automatic detection of cybersickness on the 
basis of patterns observed in EEG signals, traditional 
machine learning algorithms (e.g., Support Vector Machines, 
Naïve Bayes, and k-Nearest Neighbors) have been 
extensively applied to the analysis of EEG data for automatic 
cybersickness detection [20-25]. Moreover, recent advances 
in deep learning (DL) algorithms, which are aimed at learning 
representations from data in successive layers of processing 
in neural networks,  and increasing availability of 
computational resources for DL have paved the way for the 
application of DL frameworks to EEG-based detection of 
cybersickness [26-29]. 
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 This paper provides a systematic review of the peer-
reviewed literature on the application of DL frameworks to the 
analysis of EEG-data to detect cybersickness during VR 
exposure. The goals of this review were (a) to compile the 
relevant studies in this burgeoning area of research, (b) to 
identify the trends and issues in the use of DL frameworks 
when classifying EEG-data to detect cybersickness, and (c) to 
provide methodological guidelines for the design of EEG-
based VR experiments for cybersickness detection, 
preprocessing of data, and selection of DL architectures and 
hyperparameters. 

II. METHOD 

A. Literature Search 
To identify the relevant papers in the literature, repeated 

searches were conducted on three commonly used databases, 
namely Web of Science, PubMed, and Google Scholar. 
Because the application of deep learning to the classification 
of cybersickness levels using EEG data is rather specific, the 
original database search was performed to include a wider 
array of papers, using the following keyword combinations: 
((cybersickness  OR motion sickness  OR simulator sickness)  
AND (EEG OR electroencephalogram  OR 
electroencephalography OR brainwaves  OR brain signals  or 
physiological)) 

This original search was performed to search through all 
fields for a given paper and resulted in a total of 408, which 
was further refined to yield 132 results after filtering and 
eliminating duplicates. Upon a closer look at the results 
through their title and abstract, the list of papers was reduced 
to 33 results.  

B. Eligibility Criteria 
In order for a paper to be included in this review, it needed 

to meet certain eligibility criteria. To begin with, the paper 
should have attempted to predict cybersickness as the target 
variable. The paper should also have investigated 
cybersickness in VR interactions using an HMD. Given the 
proliferation of modern HMDs, cybersickness is a more 
prevalent issue for HMDs. Furthermore, EEG patterns 
observed when participants wear an HMD are expected to be 
different from those observed when users interact with a 
CAVE-like immersive environment. Finally, the paper should 
have collected EEG data and should have used at least one DL 
architecture. 

C. Screening 
The refined list of 33 papers was screened according to 

the eligibility criteria described in the previous section. Some 
13 of these papers were excluded from this review because 
no deep learning technique was used in the paper. Similarly, 
nine papers were excluded for not having collected and used 
EEG data to predict cybersickness and six papers for not 
having used an HMD. Lastly, one paper was a review paper 
reporting no empirical data. This screening resulted in a final 
list of four papers that meet the eligibility criteria [26-29]. 
Therefore, the current review focused on these four papers. 

III. RESULTS 
The final list of four papers [26-29] included in this 

review were closely scrutinized and encoded to capture a 
variety of attributes in relation to experimental procedures, 
data preprocessing steps, and DL architecture choices. Table 
1 provides a detailed summary of these papers. 

A. Experimental Design 
Experimental design plays a pivotal role when integrating 

EEG measurements into human-computer interaction 
experiments in VR. The overall experimental procedure 
followed by a study directly influences whether DL 
techniques can be applied to the analysis of the data collected 
from the experiment. Therefore, in what follows a detailed 
description of the various experimental design choices made 
by the previous studies is provided as a practical guide for 
future studies into this nascent area of research. 

1) EEG Devices 
Some of the early studies into EEG-based classification 

of cybersickness levels have used research grade EEG 
devices [15]. While these EEG devices provide reliable 
measurements of electrical activity in the brain, they present 
unique challenges when combined with head-mounted VR 
headsets in terms of placing both the EEG device and VR 
headset on users’ head at the same time. Therefore, there has 
been an increasing interest in the use of noninvasive, wireless 
EEG devices to measure cybersickness while participants 
wear an HMD [13]. This trend was also observed in the 
studies included in this review. In fact, with the exception of 
[26], the remaining three studies used a non-invasive, 
wireless EEG device to capture brain activity (Emotive 
Epoc+ or Neurosky MindWave). 

Emotiv Epoc+ is a 14-channel wireless EEG device and 
is perhaps one of the most commonly used mobile EEG 
solutions available. While the availability of 14 channels is 
an advantage, the physical shape of the device and how it 
needs to be fitted on users’ head may represent a challenge in 
future studies. The reason is that if not fitted properly, Emotiv 
Epoc+ readings will be unreliable. NeuroSky MindWave, on 
the other hand, is a single-channel EEG device placed on the 
forehead and collects data from the FP1 position. Admittedly, 
collecting brain activity data through a single channel has 
apparent downsides when compared to Emotiv Epoc+. That 
said, the placement of NeuroSky MindWave headset on 
users’ head is substantially easier and works better with a VR 
HMD than does Emotiv Epoc+. Considering the fact that 
these two wireless EEG devices have not been designed with 
VR integration in mind, there will be some tradeoffs when 
using these devices in future VR experiments. One potential 
alternative to these devices is LooxidLink 
(https://looxidlabs.com/looxidlink/), which is a wireless, 6-
channel EEG device designed to be easily attached to modern 
VR HMDs, such as Oculus Rift and HTC VIVE. 
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TABLE I.  SUMMARY OF REVIEW STUDIES 

1) VR Headset 
When studying cybersickness in VR, the VR headset used 

to view and interact with the VE is a key consideration. Based 
on the small number of studies included in the review, it can 
be said that various types of VR headsets have been used in 
prior research, including HTC VIVE, FOVE VR, and 
smartphone-based VR cardboard. Considering the recent 
release of untethered, light-weight VR headsets, such as 
Oculus Quest, we foresee that future research will witness the 
use of different VR headsets. 

2) VR Environments 
In cybersickness prediction studies, the goal is to ensure 

that some portion of the participants will experience a 
bearable amount of cybersickness, in order to differentiate 
between cybersickness and no-cybersickness classes. 

To this end, previous studies have predominantly used 
360-degree videos, which participants watched in VR. [26] 
used 44 short videos depicting an assortment of urban and 
astrospace scenes, all of which authors noted included visual 
motion. Similarly, the videos used by [27], [28] and [29] also 

included visual motion. In line with prior cybersickness 
research, roller coaster scenes were a popular choice in these 
previous studies [2-4]. The heavy use of VR content inducing 
visual motion during the VR experience is compatible with 
the prior work on the effect of visually-induced motion on 
cybersickness [13]. Therefore, future studies could utilize the 
same strategy as well.  

One problem with these previous studies, however, is that 
users were passively exposed to these VR experiences with 
no explicit interaction between the user and VE. Based on the 
current evidence from these studies, it is unclear whether we 
would be able to predict cybersickness levels from EEG data 
using DL approaches when users are more actively engaged 
in the VE, as in the case of playing a VR game for instance. 
Thus, future studies should seek to incorporate different VR 
experiences with which users can interact to some extent. It 
should be noted, however, that frequent head and body 
movements could potentially add more noise to EEG data, 
which should be taken into account when preprocessing the 
data for analysis. 

Study 
Study Attributes 

EEG Device VR 
Content Data Classification 

Type 
Preprocessing Algorithm Hyperparameters Accuracy 

[26] 

8-channel  
250 Hz & 
16 bits 

44 VR 
videos  

(16s each) 

30,663,600 
samples 

Multiclass 
(Likert scale 

rating) 

Fourier 
Transform 

(FFT) 
CNN 

# Layers: 3 
Activation: Leaky ReLU 

Optimizer: Adam 
Pooling: Max 

Batch normalization 

87.13% 

[27] 
14-channel 
Emotiv 
Epoc+ 

6 360-
degree 
videos  

(1-5 min 
each) 

2,722,269 
samples 

Binary 
 

Normalization 
Standardization 

DNN 

# Layers: 3 (128, 256, 128) 
Activation: ReLU 

Output Activation: Sigmoid 
Input shape: 84 

Output shape: 32 
Epochs = 1000 
Dropout = 0.5 

98.02% 

CNN 

# Convnet Layers: 3  
with (5,1) filter 

Max Pooling: 1 with (2,1) filter 
FC Layer: 1 with 100 nodes 

Activation: ReLU 
Output Activation: Sigmoid 

Dropout = 0.5 
Early stopping 

98.82% 

[28] 
14-channel 
Emotiv 
Epoc+ 

4 360-
degree 
videos  

(2-3 min 
each) 

550,000 
samples Binary Normalization 

Standardization DNN 

# Layers: 3 (128, 256, 128) 
Activation: ReLU 

Output Activation: Sigmoid 
Input shape: 84 

Output shape: 32 
Epochs = 1000 
Dropout = 0.5 
Early stopping 

99.12% 

[29] NeuroSky 
Mindwave 

3 360-
degree 
videos 

(10 min in 
total) 

78,000 
samples Binary 

FFT  
Power Spectral 

Density 

RNN - 
LSTM 

# Layers: 7  
(32, 32, 32, 16, 16, 8, 8) 

Activation: ReLU 
Output Activation: Sigmoid 

Batch size: 100 
Epochs: 125 

L1 and L2 regularization 
Optimizer: RMSProp 

Time steps: 3 (1, 5, 10 min) 
Dropout = 0.5 

1-min step: 
83.94% 

 
5-min step: 

83.33% 
 

10-min step: 
83.92%" 
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3) Cybersickness measures 
In order to build a cybersickness detection framework, 

previous studies had users provide labels for the EEG data in 
the form of self-reported cybersickness levels. For this 
purpose, these studies used slightly different measures. To 
begin with, [26] used a multiclass classification approach and 
asked users to rate their cybersickness levels on a 5-point 
Likert scale (from 5-extreme sickness to 1-comfortable). The 
other three studies used a binary classification approach. [27] 
and [28] asked users to indicate whether they experienced 
cybersickness during VR exposure, which was 
dichotomously coded. [29], on the other hand, had users 
complete the SSQ. The authors then assigned a class label of 
“sickness” vs. “normal” based on users’ score on the SSQ. If 
the SSQ score was greater than 60, the class label was 
“sickness”, and it was “normal” otherwise.  

Considering the problems associated with dividing users 
into cybersickness vs. no cybersickness classes based on an 
arbitrary cutoff score on a questionnaire, it might be a better 
idea to present to users a brief description of cybersickness 
and its symptoms at the end of the VR experience and to 
directly ask them to indicate whether or not they experienced 
cybersickness during their VR exposure. Based on the answer 
to this binary question, a follow-up question may be 
displayed, asking users to rate the severity of their 
cybersickness. Currently, there is a lack of comparative 
studies into the best approach to encoding the class variable, 
which is why future studies could build and test different 
models using these different approaches. Some open 
questions regarding the labeling of data are as follows: Does 
a binary classification task lead to better performance results, 
compared to a multiclass classification task?  Is it better to 
use a dichotomous question or a standard questionnaire, such 
as SSQ? 

4) Experimental procedures 
All four studies have used similar procedures during data 

acquisition. In general, experimenters placed the EEG device 
and VR HMD on users’ head, and brain activity was captured 
during the VR experience. Users then provided self-reported 
ratings of their cybersickness levels. In the case of multiple 
VR experiences, users took short breaks to eliminate carry-
over effects. One trend among the studies was that users were 
exposed to multiple VR experiences and provided self-
reported assessments of their cybersickness levels for each. 
This way previous studies have been able to collect larger 
amounts of data than would be obtained using a single VR 
experience. For future studies, it would be prudent to devise 
multiple shorter VR experiences than a standalone long 
experience, especially when the number of users available for 
the experiment is limited. Regardless of the chunking of the 
content, all previous studies [26-29] exposed their 
participants to VR for a total of 10-15 minutes, which future 
studies could consider. 

B. Data preprocessing 
Given the sensitivity of EEG data to noise, raw electrical 

activity signals obtained through an EEG device are typically 
preprocessed before they are fed into a DL architecture. For 
studies in which the EEG device used to collect the data did 
not automatically extract power bands [26, 29], researchers 
applied Fast Fourier Transform (FFT) to raw EEG data to 
extract power bands (i.e., alpha, beta, gamma, delta, and 
theta). Once the power signals were available, the dataset was 
fed into the architecture without further preprocessing, except 
for normalization and standardization. [27] and [28] did in 
fact compare the effect of normalizing and standardizing 
feature vectors and found that standardized features led to a 
higher accuracy level than normalized features. One 
exception to this was [29], in which the authors also applied 
Power Spectral Density after FFT. As for the input 
formulation of the preprocessed EEG data into DL models, 
previous studies have exclusively relied on signal values for 
the different types of brainwaves, which were fed into the 
models [26-29]. 

C. DL Architectures 
1) Architecture Design 
The design of DL architectures for a given dataset is 

experimental in nature. This, coupled with the relatively 
recent application of DL approaches to VR research, 
translates into a burgeoning area of research at the 
intersection of machine learning and VR, which is 
challenging at the same time, as there are no established 
guidelines to aid researchers in their selection of various 
architecture designs.  

The four studies included in this review have used deep 
neural networks (DNN), convolutional neural networks 
(CNN), and recurrent neural networks (RNN). DNNs are 
basic neural networks with two or more fully-connected, 
hidden layers, which are usually represented in a group of 
layers stacked linearly. CNNs are a special type of DNNs 
designed to learn local patterns in the data through 
convolution operations (filtering) in convolutional layers, 
which are then pooled in pooling layers to reduce the size of 
the representation and to compute the parameters faster. 
CNNs are optimized for image processing and commonly 
used in computer applications. RNNs are another type of 
DNNs specifically designed to work with sequence data. 
Unlike DNNs and CNNs, RNNs learn representations from 
data in an iterative manner, allowing the output of a layer to 
be used as the input to the same layer in the next time step. 
RNNs are usually defined by the type of recurrent layers 
used, with two common layers being Long Short-Term 
Memory (LSTM) and Gated Recurrent Unit. 

Of the five models built in the four papers included in this 
review, two were DNN-based, two CNN-based, and one 
RNN-based (LSTM to be more precise). Coming from the 
same research group, the DNN models reported by [27] and 
[28] used the same network architecture, with three hidden 
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layers containing 128, 256, and 128 nodes, respectively. The 
classification accuracy of the DNN model was 98.02% in 
[27] and 99.12% in [28]. 

Despite being more commonly applied to image data for 
computer vision applications, CNNs have been used to 
analyze the sequence data obtained from the EEG device. The 
CNN model reported by [26] included three convolutional 
layers, one pooling layer, and two fully-connected layers. 
[27]’s CNN model was different in that it included three 
convolutional layers, one pooling layer, and one fully-
connected layer. Of note, [27] converted the EEG signals into 
a black-and-white image before feeding the data into the 
network to better utilize the optimized performance of the 
CNN architecture for the analysis of image data. With this 
approach, [27] obtained a classification accuracy of 98.82%, 
whereas the accuracy of [26]’s CNN model was 87.13%.  

The RNN model built by [29] was an RNN using LSTM 
with three time-steps and seven fully-connected hidden 
layers. The best classification accuracy of the LSTM model 
was 83.94% with a 60-second step. Given the optimized 
performance of RNNs on time-series data, the relatively poor 
performance of the LSTM model compared to the DNN and 
CNN architecture highlights the need for future research into 
this area. Due to the stark differences in experimental 
procedures across these studies (e.g., different EEG devices), 
no firm conclusions can be drawn in relation to the 
comparison of the performance of these three DL 
architectures when classifying cybersickness levels from 
EEG data. It is possible that the low accuracy rate of [29] can 
be attributed to the fact that the study used a single-channel 
wireless EEG devices, whereas an 8-channel scalp EEG 
device and 14-channel wireless EEG device were used in [26] 
and [27-28], respectively. 

2) Activation Functions 
Activation functions are crucial hyperparameters of DL 

architectures that determine the output of nodes and are used 
to introduce non-linearity to the computation of the output of 
a node. The most commonly-used activation function for 
hidden layers in DNN models and convolutional layers in 
CNN models was the rectified linear unity (ReLU) function, 
which was used in the four models reported in [27-29]. The 
activation function used in the CNN model reported by [26] 
was the leaky ReLU. As for the activation functions used for 
the output layer, all models used the sigmoid function. While 
these common choices usually work well for the type of 
classification tasks used in the prediction of cybersickness 
from EEG data, future research is warranted to compare 
different activation functions and identify the optimal 
combination(s) of these activation functions for 
cybersickness classification problems. 

IV. DISCUSSION 
This systematic review provided an analysis of the 

existing studies into the application of DL algorithms to the 

EEG-based detection of cybersickness experienced as a result 
of exposure to VR. As a result of the systematic search of 
scientific databases, we found only four papers investigating 
the EEG-based detection of cybersickness using DL 
frameworks, which clearly indicates the fact that research 
into this exciting area is in its infancy. The review indicated 
that these studies have all been recently published and that 
they have utilized similar procedures for the design, 
administration, and analysis of EEG-based VR experiments. 
In what follows, we provide some guidelines for future 
research into this area, highlighting trends and issues 
identified in the studies reviewed here.  

A. Experimental Design 
All four studies used similar experimental procedures in 

which users were exposed to a VR experience and then 
provided self-reported assessments of their cybersickness. 
This way authors were able to construct large datasets 
involving timeseries EEG data as a 2D tensor of (timestamp 
x channel) shape for each participant. Based on the trend 
observed in these studies, future studies should consider 
using multiple, shorter VR experiences as opposed to a 
single, longer VR experience to collect more data samples. In 
so doing, each participant will provide multiple data samples, 
reducing the number of participants that need to be recruited 
for future experiments.  

Another trend in the literature is to formulate the DL task 
as a binary classification in which the target variable indicates 
whether or not users experienced cybersickness during the 
VR experience. Only one out of the five DL models reported 
in these four studies have used multiclass classification [26], 
where users rated the severity of their cybersickness on a 
Likert scale. The rest of the studies used binary classification 
and had users make a dichotomous selection (cybersickness 
vs. not) [27-29]. None of the studies included in this review 
compared the effect of using binary classification to that of 
using multiclass classification on the performance of DL 
models when classifying cybersickness levels. That said, [30] 
did compare the two when classifying cybersickness based 
on some other physiological signals and found that binary 
classification yielded a classification accuracy of 82%, while 
the same was 56% for ternary classification (no, mild, and 
severe cybersickness). With multiclass classification, it is 
more likely to obtain an unbalanced dataset in terms of the 
distribution of the different categories of the target/class 
variable, especially when there is a limited number of users 
participating in the experiment. Therefore, for future studies, 
it would be prudent to obtain a balanced sample and start out 
with binary classification. As research into this area 
flourishes, it is projected that more studies comparing binary 
classification to multiclass classification will become 
available. 

B. DL Architectures 
Previous studies included in this review have built DNNs, 

CNNs, and RNNs to classify cybersickness from EEG 
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signals. The details of these frameworks are available in 
Table 2. While these studies clearly explained their models, 
the descriptions of these models can be improved in several 
ways, which serve as good guidelines for future studies. To 
begin with, data preprocessing steps should be clearly 
outlined in a separate section. This section should provide 
information on whether the EEG data were transformed to 
extract power signals or whether raw EEG values were used. 
If transformations and other feature extraction techniques 
were applied, these should be clearly explained and justified.  

When reporting the structure of DL frameworks, the type 
of the DL model should be explicitly stated. The description 
of the DL architecture should clearly state the input 
formulation (the shape of the feature tensor), the number and 
type of layers, activation functions used in these layers, and 
the shape and activation function of the output layer. There 
should also be a detailed description of other model-specific 
key hyperparameters, such as filters and pooling layers 
applied to convolutional layers in CNNs and time steps for 
RNNs. 

Future studies should also elaborately describe how they 
addressed the problem of overfitting, which occurs when the 
predictive model is very specific to the training data but 
cannot generalize to the test data and is even more 
pronounced for DL frameworks. Activity regularization, 
dropout, and early stopping are some common strategies to 
reduce overfitting. They should be used when necessary, and 
this should be explicitly described. Furthermore, future 
studies should clearly describe how the data were split into 
training, validation, and test sets, as well as the evaluation 
strategy (e.g., k-fold cross validation).  

Another issue was that previous studies have solely relied 
on classification accuracy as a performance metric. Only [29] 
reported other metrics, such as a confusion matrix. While 
classification accuracy is extensively reported in the 
literature, it fails to capture the whole picture when it comes 
to evaluating the performance of a predictive model. Thus, 
future studies should report a wider array of classification 
metrics, such as confusion matrix, F-1 score, AUC-ROC, and 
log loss. It would also be useful to report training and 
prediction times for various models to enable other 
researchers to better assess the tradeoff between the accuracy 
and speed of these models. 

C. Data and Code Sharing 
One common issue across the studies included in this 

review was that none of them have made their data or code 
publicly available. Given the dire need for reproducible AI 
research in computer science circles [31], it is of paramount 
importance that studies conducting computational 
experiments, such as the ones included in this review, 
publicly share the data and code used for preprocessing and 
analysis. This simple open-science practice will enable future 
researchers to devise new data analysis strategies and help 
broaden the availability of studies into this exciting, but 

nascent, area of research, while at the same time increasing 
the credibility of scientific research in this field. 
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